《自然》杂志评出 2016 年度科学摄影佳作

科学领域亮眼的珍贵瞬间

科学领域充满着惊喜。 为了捕捉那些非凡的事 件,摄影师们走遍世界各 地。从显微镜下的微观世 界直到广袤的宇宙空间, 他们定格的影像令人惊 叹。去年年末,英国《自 然》杂志对 2016 年的精 彩科学照片作了回顾。

■林音 编译

闪电中的鹤群

成千上万只沙丘鹤汇聚在美国内 布拉斯加州的普拉特河沿岸。这里是 它们每年的一个迁徙地, 从墨西哥和 美国北部迁徙到南部繁殖的沙丘鹤暂 时在这里歇息,场面非常壮观。2016 年 3 月,摄影师兰迪奥尔森在闪电的 瞬间,用长时间曝光拍下了这张照 片, 勾勒出雷电中鹤群飞行队列幽灵

古象牙

很久前死去的猛犸象的一根巨大 的长牙正被人从西伯利亚雅库特的森 林中搬运出去。由于猛犸象古象牙极 为珍贵,现在已成为一些人非法挖掘 的冻土中的宝藏。一根猛犸古象牙大 约能卖好几万美元。

飞船发射

这张用长时间曝光拍摄的照片 展示的,是 2016年11月在哈萨克 斯坦拜科努尔航天发射场发射"联 盟"号宇宙飞船时的情景。这架飞 船将美国宇航局的工作人员佩吉·惠 特森、俄罗斯航天员奥列格·诺维茨 基和法国航天员托马斯·佩斯凯送入 国际空间站。

值得一提的是, 惠特森现在是全 球宇航员中年龄最大的女性, 这次的 飞行将使她打破众多记录: 她将于今 年2月庆祝自己的57岁生日。惠特 森是出生于爱荷华州的生化学家,这 是她第三次执行太空任务, 第二次担 任指挥。她已经在太空中累计度过了 377 天, 并进行了多次太空行走。这 次空间站之行将使她在太空中停留的 时间增加到534天。

绚烂的脚趾

这张色彩斑斓的图片是一只雄性 潜水甲虫(又称龙虱)腿部最下端的 跗骨,直径约2毫米。雄性龙虱在交 配时,用它来抓住雌性龙虱的后背。

太空风暴

从国际空间站拍摄的地球——闪 电照亮了云层, 可以清晰地看到地球 上无数聚集的灯光所揭示的人类活 动。照片上方,是两艘正在造访国际 空间站的俄罗斯太空飞船。

水晶阶梯

这些像阶梯一样的结构是放大了 2000 倍后的碳酸钙晶体图像。

木乃伊的纹身

在去年4月举办的美国人体人类 学家协会的一个会议上,科学家展示 了在一个木乃伊脖子上发现的古埃及 刺青,图像包括两只坐着的狒狒和一 个神圣的保护符号。

透明的影像

去年8月,德国一个团队公布了 一种"终极 DISCO"技术,该技术 能够促进组织变得透明以及促进标 本收缩,这样一来,整个动物机体的 标本就能够被一次成像。这种技术能 够揭示机体内的神经系统和器官的

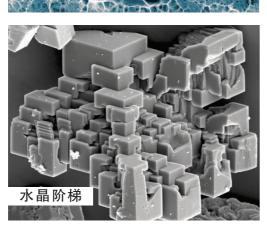
惊人的细胞

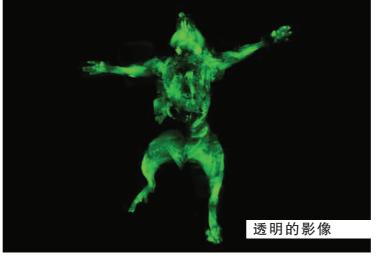
这个人类干细胞的直径仅有 15 微 米大小, 利用冷冻扫描电子显微镜技成 像后,进行假色上色得到这张图像。

最后的树蛙

这是《自然》年度照片评委会评 委特选的一张照片,推荐理由是因为 它实在太珍贵了。由传奇自然摄影师 乔·萨图尔拍摄的这只巴拿马树蛙, 是世界上这一种群的最后一只,它被 取名为"塔菲"。去年"塔菲"的死 亡,意味着这一物种就此灭绝。


图片来源:《自然》杂志网站





2017年的这些科学事件 值得我们期待

www.whb.cn 文匯郭

在新的一年中, 探测黑洞的全球网络将正式启 动,研究者将继续角逐量子科技主导权,治疗癌症的 免疫疗法药物也有望获得批准进入市场……

英国《自然》杂志为我们展望了2017年最值得 期待的科学事件-

中国的嫦娥五号探月任务将会送回上世纪70年代 以来的首批月球样本。如果任务取得成功, 嫦娥五号 收集到的2千克岩石和土壤应将会拓展有关月球形成 与演变的研究。

今年9月,拥有20年历史的NASA卡西尼探测器 即将光荣退役,并飞入土星内环。研究者期待它能在 土星大气层中解体前,发回大量数据。

2017年将会有更多关于人类微生物组 (人体内的 病毒、细菌和其他微生物及其基因)对健康影响的研 究,研究者将会考察微生物组对大脑发育和癌症所起

美国人类微生物组项目二期的成果也将在明年揭 晓, 这一项目主要关注人类微生物群与早产的关系,

美国法院可能会对加州大学伯克利分校和博德研 究所的 CRISPR - Cas9 专利之争做出裁决。取得这项 基因编辑技术发明权的机构能收入数 10 亿美元的专利 许可费用。基于后续研究的结果, CRISPR - Cas9 系统 的竞争对手、一直难以重复的 NgAgo 基因编辑系统的 命运沉浮也将揭晓。

在英国,诊所现在可以申请许可证来实施一项有 争议的辅助生殖技术。这一操作会混合来自三人的 DNA, 旨在防止婴儿遗传来自母亲线粒体 (细胞中制 造能量的结构)的疾病。

物理学家希望可以在 2017 年看到量子计算机执行 连顶级经典计算机也无法完成的计算。谷歌、D-wave 和其他一些技术公司都已加入对量子霸权的争夺中, 但它们并不是攀登计算新高峰的唯一选手。

微软正在研发一种雄心勃勃的替代技术——拓扑 量子计算,这种技术对材料中类似粒子的物体运动信 息进行编码,方法似乎更加稳健。微软或许能在2017

今年4月, "事件视界望远镜" ——由全球9台 射电望远镜组成的观测阵列将全面投入使用,它将 观测银河系中心的超大质量黑洞。如果这一尝试成 功, 所获得的图像应将有助于检验广义相对论, 阐明 黑洞的行为。

与此同时,激光干涉引力波天文台 (LIGO) 和处 女座干涉仪团队将会迎来首次高级联合运行, 让研究 者得以将引力波的来源锁定到具体的星系。

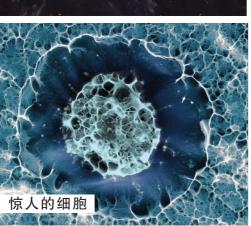
2017年下半年,价格低、厚度薄的太阳能电池将 走出实验室,拉开市场化进程的帷幕。自2009年以 来, 钙钛矿基太阳能电池的效率一直在显著提升, 但 直到最近,研究者才在克服这一材料的一些严重缺陷 (包括稳定性和毒性)方面取得了重大进展。与此同 时,他们也在推动着电池生产成本的下降。

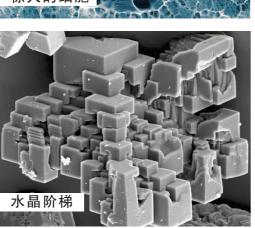
随着投资 12 亿欧元的欧洲 X 射线自由电子激光 项目在德国汉堡上线,材料科学领域也会受到提振: 这一设备让研究者得以研究瞬间的化学反应,以及原 子尺度细节下的生物和物理过程。

对外太阳系的探索或许将帮助我们锁定第九大行 星的位置。在科学家的设想中,它是一颗每2万年左 右环绕太阳1周的巨大行星。此前,很少有证据表明 这颗行星的存在,但2016年的一项研究发现,一些柯 伊伯带天体 (远在冥王星轨道之外的冰冷天体) 的行 为, 暗示存在着第九大行星。今年 12 月, NASA 的凌 日系外行星巡天卫星 (TESS) 将发射升空, 在此之后, 人类又将增添一位搜寻系外行星的猎手。

CAR-T, 一种史无前例的癌症免疫疗法似乎已蓄 势待发,将要打入市场。两家制药公司——风筝制药 和诺华制药正在加紧申请这一疗法的许可。CAR-T疗 法需要对患者免疫系统中的 T 细胞进行基因改造, 并 用它们来抗击癌症。尽管在一些公司的研究中,这一 疗法的毒性问题导致了病人死亡,但 CAR-T 作为治疗 白血病和淋巴瘤患者的最后手段,仍然有望在今年获

全球最大的海洋保护区将会在今年 12 月进入保护 期,届时南极洲罗斯海的部分地区将会禁止商业捕鱼 和矿物开采。在南极洲的另一地区,一座大型冰山可 能会从拉森冰架崩裂,将拉森冰架的冰雪量缩小至 1893年发现以来的最低点。在更为温暖的地区,有关 过去数年来普遍的珊瑚白化事件的研究将会揭示为何 一些地区的珊瑚相对完好地幸存了下来。


摘自 Nature 自然科研


▼南极洲变暖加速了冰层消失

